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SUMMARY

When multiple diagnostic tests are performed on an individual or multiple disease markers are available
it may be possible to combine the information to diagnose disease. We consider how to choose linear
combinations of markers in order to optimize diagnostic accuracy. The accuracy index to be maximized
is the area or partial area under the receiver operating characteristic (ROC) curve.

We propose a distribution-free rank-based approach for optimizing the area under the ROC curve and
compare it with logistic regression and with classic linear discriminant analysis (LDA). It has been shown
that the latter method optimizes the area under the ROC curve when test results have a multivariate normal
distribution for diseased and non-diseased populations. Simulation studies suggest that the proposed non-
parametric method is efficient when data are multivariate normal.

The distribution-free method is generalized to a smooth distribution-free approach to: (i) accommodate
some reasonable smoothness assumptions; (ii) incorporate covariate effects; and (iii) yield optimized
partial areas under the ROC curve. This latter feature is particularly important since it allows one to
focus on a region of the ROC curve which is of most relevance to clinical practice. Neither logistic
regression nor LDA necessarily maximize partial areas. The approaches are illustrated on two cancer
datasets, one involving serum antigen markers for pancreatic cancer and the other involving longitudinal
prostate specific antigen data.
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1. INTRODUCTION

Diagnostic tests often yield more than one output parameter. Alternatively, several diagnostic tests may
be performed simultaneously. A question which arises in such settings is how to combine information
from multiple test results in order to discriminate diseased from non-diseased states. Let Y1, Y2, . . . , YP

denote the distinct numeric test results. In this paper we consider linear combinations of test results,
S(α, Y ) = �αpYp, and the choice of coefficients (α1, . . . , αP ) which maximize the diagnostic accuracy
associated with the resultant composite score, S.

Various measures of diagnostic accuracy might be used. Here we focus on the area under the ROC
(receiver operating characteristic) curve as the objective function. This is the most widely used index of
diagnostic accuracy for diagnostic tests with continuous or ordinal data (Begg, 1991). The ROC curve
for a score, such as S, is defined as the set of points {(FP(c), TP(c)), c ∈ (−∞, ∞)} where TP(c) =
P[Si > c| study unit i is diseased], which can be interpreted as the true positive rate associated with the
positivity criterion S > c and FP(c) = P[S j > c| study unit j is non-diseased], which can similarly
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be interpreted as the false positive rate at threshold c. The ROC curve therefore shows the trade-offs
between increasing true positive (TP(c)) and increasing false positive rates which are feasible with the
diagnostic score. It is a monotone increasing function from (0, 0) to (1, 1), with curves closer to the (0, 1)

point associated with better diagnostic tests. The area under the ROC curve is a summary measure of
accuracy, lying in the range (0.5,1), with 1 indicating perfect discrimination for some threshold c and
0.5 indicating no discrimination capacity. Indeed it can be interpreted as P(SD > SD̄) where SD and
SD̄ represent scores for randomly chosen diseased and non-diseased subjects. It measures the distance
between the distributions of scores for diseased and non-diseased subjects, in a distribution-free sense.
A related measure of diagnostic accuracy which we will also consider is the partial area under the ROC
curve, which restricts attention to the ROC curve over a range of acceptable false positive rates for the
test.

Other measures of diagnostic accuracy exist, such as predictive values. The positive predictive value
(PPV) of a dichotomous test is P(disease|positive test) and correspondingly the negative predictive value
(NPV) is P(not diseased|negative test). The natural analogues of PPV and NPV for the continuous score
S are PPV(c) = P(disease|S > c) and NPV(c) = P(not diseased|S < c). These predictive value
functions are defined relative to thresholds and since in practice clinical decisions will be based on the
score exceeding a threshold, it is relevant to focus on measures of accuracy associated with such criteria.
Unfortunately these have not yet been well studied in the literature. Thus we employ the better developed
ROC approach here.

The objective then is to find αopt, which is the {α1, . . . , αP } that maximizes the area under the ROC
curve associated with

∑
αpYp. It has been shown that if {Y1, . . . , YP } has a multivariate normal distribu-

tion in each of the diseased and non-diseased populations, then the score defined by the linear discriminant
function maximizes the area under the ROC curve (Su and Liu, 1993). In this paper we relax the multi-
variate normal assumption and seek linear forms which maximize a distribution-free estimate of the area
under the curve. Interestingly this approach, in contrast to the normal theory discriminant approach, can
be extended in two important ways. First, it can be extended to maximize the partial ROC area. Second,
it can accommodate covariates which affect diagnostic accuracy, such as age, disease severity or timing
of measurement relative to disease onset.

In Section 2 we describe the basic approaches to deriving linear scores. In Section 3 we extend the
distribution-free approach in the two aforementioned directions. In Section 4, results of simulation studies
are presented wherein finite sample properties of the methods are assessed. We conclude with a discussion
in Section 5 of how our methods relate to other methods for deriving linear scores for classification.

2. THE BASIC APPROACHES

2.1. Preliminaries

We use a simple dataset to illustrate the ideas. These data were derived from a study of 90 pancreatic
cancer patients and 51 control patients with pancreatitis (Wieand et al., 1989). Two serum markers were
measured on these patients, the cancer antigen CA125 and CA19-9 which is a carbohydrate antigen.
For our purposes the marker values were transformed to a natural logarithmic scale and are displayed in
Figure 1. Estimated ROC curves associated with ln(CA125), Y2, and with ln(CA19-9), Y1, are shown
in Figure 2 with areas of 0.71 and 0.86, respectively. The objective in this analysis is to derive a linear
combination of Y1 and Y2 which yields a better ROC curve than either one alone.

In this example, and throughout most of this paper, only two markers are involved. Dealing with the
simplest setting, P = 2, we can address the fundamental issues, while avoiding some of the computational
difficulties, which need to be addressed when P > 2. We will discuss extensions to settings with more
than two markers later. With two markers, finding the linear combination α1Y1 + α2Y2 which maximizes
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Fig. 1. Y2 = ln(CA125) versus Y1 = ln(CA19-9) for 141 subjects. Lines corresponding to estimated 80% specificity
for scores calculated with the LD (—), DF (– – –), and LR (.......) methods are also shown.

the area under the ROC curve (AUC) is equivalent to finding the value α ∈ (−∞, ∞) such that Y1 +
αY2 maximizes the AUC. This is a consequence of the fact that the ROC curve is invariant to scale
transformations. In each of our applications we standardize Y1 and Y2 to have mean 0 and variance 1, to
assist in the interpretation of α as a relative weight of Y2 to Y1 in the combination.

2.2. The normal linear discriminant approach

If Y = (Y1, Y2)
′ is distributed as a multivariate normal random variable with mean and variance-

covariance parameters (µD, �D) and (µD̄, � D̄), in the diseased and non-diseased population, respec-
tively, then the AUC for Y1 + αY2 is

AUCLD(α) = �

(
(1, α)(µD − µD̄)/

{√
(1, α)(�D + � D̄)(1, α)

})
,

where � denotes the standard cumulative normal distribution function. As shown by Su and Liu (1993),
the optimal coefficient α is αLD = a2/a1 where

(a1, a2)
′ =

(
�D + � D̄

)−1
(µD − µD̄).

Moreover, the optimal AUC is

AUCopt
LD = �

(√{
(µD − µD̄)′

(
�D + � D̄

)−1
(µD − µD̄)

})
.
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Fig. 2. ROC curves for Y1 = ln(CA19-9) and Y2 = ln(CA125) based on data from 90 cases and 51 controls. The
areas under the ROC curves are 0.86 for Y1 and 0.71 for Y2.

In practice the mean and variance-covariance parameters are estimated from the data and the estimates
are substituted into the above formulas.

Applying these results to the pancreatic cancer data yielded α̂LD = 0.27 and ÂUC
opt
LD = 0.893. Thus, a

linear combination of (standardized) Y1 and Y2 with Y1 receiving higher weight than Y2 appears to have the
best discriminating capacity among all linear combinations of Y1 and Y2. Note that, the analysis does not
suggest a specific threshold or decision rule be associated with the combination. Such optimization would
require information on costs associated with false positive and false negative errors as well as information
on disease prevalence. In the absence of such information, which may vary with the application, our results
simply provide us with the optimal linear combination that maximizes the AUC distance between the
diseased and non-diseased populations. One might use different thresholds for the combination in different
applications. Figure 1 shows the ‘threshold’ line corresponding to (standardized) Y1 + α̂LDY2 = c, for
estimated specificity of 80%. Parallel shifts of this line correspond to different choices of threshold (and
hence different sensitivity and specificity) for the linear combination of the markers.

Figure 3 displays ÂUCLD(α) versus α for α ∈ (−∞, ∞). For ease of presentation, the plot displays
ÂUC(α) versus 1/α when α > 1 or α < −1. In this plot observe that ÂUC(α) corresponds to the AUC
associated with Y1 alone at α = 0 and to that for Y2 alone when 1/α = 0. Interestingly, the AUC for Y1
alone appears to be similar to that for the optimal linear combination, S = Y1 + 0.27 Y2 suggesting that
Y2, in fact, adds little to the discriminating capacity of Y1.

2.3. The distribution-free approach

The above calculations pertain to the setting where (Y1, Y2) are assumed to have bivariate normal dis-
tributions. We now consider maximizing the AUC without assumptions on the distributions of (Y1, Y2).
It has been shown (Bamber, 1975) that the area under the ROC curve for S can be interpreted as a prob-
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Fig. 3. Plot of the estimated area under the ROC curve associated with Y1 + αY2 when Y1 and Y2 are assumed to
have a bivariate normal distribution and the LD method is applied to the pancreatic cancer marker data. The optimal
coefficient is indicated with an asterisk.

ability, P[SD ≥ SD̄], where SD and SD̄ are scores for independent, randomly selected study units from
the diseased and non-diseased populations, respectively. A rank-based estimate of the AUC, based on this
fact, is the Mann–Whitney U statistic (Hanley and McNeil, 1982). If the data for diseased study units are
denoted by {(Y D

i1 , Y D
i2 ) i = 1, . . . , nD} and that for non-diseased units are {(Y D̄

j1, Y D̄
j2) j = 1, . . . , nD̄},

the Mann–Whitney U-statistic estimator of the AUC associated with S(α, Y ) = Y1 + α Y2 is

ÂUCDF(α) =
nD∑
i=1

nD̄∑
j=1

I
[
Y D

i1 + αY D
i2 ≥ Y D̄

j1 + αY D̄
j2

] /
nDnD̄,

where the subscript indicates that it is a distribution-free (DF) estimator. Therefore, as an estimate of
the optimal coefficient, αopt, one might choose the α that maximizes the Mann–Whitney U statistic and

denote it by α̂DF. Since ÂUCDF(α) is not a continuous function of α, a search rather than a derivative-
based method is required for this maximization.

To implement the maximization on the pancreatic cancer data, we evaluated ÂUCDF(α) for 201 equally
spaced values of α in [−1,1]. For α < −1 and α > 1 we note that the AUC for Y1 + αY2 is the same as
that for γ Y1 + Y2 where γ = 1/α ∈ [−1, 1]. Thus we also evaluated the AUCs pertaining to γ Y1 + Y2
for 201 equally spaced values of γ in [−1, 1]. The procedure is therefore symmetric in its treatment of Y1
and Y2. The optimal coefficient for Y2 is the α in [−1,1] or the γ −1 where γ ∈ [−1, 1] which maximizes
the ÂUCDF.

The optimal weighting for Y2 using this non-parametric procedure applied to the prostate cancer was
estimated as α̂DF = 0.39 with associated ÂUCDF being 0.894. This is very close to the optimized area
of 0.893 found using the normal theory approach. Indeed, comparing Figures 3 and 4, estimated areas
ÂUCLD(α) and ÂUCDF(α) were very similar for these data for all values of α.

Because the distribution-free (DF) approach does not depend on assumptions about the joint distri-
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Fig. 4. AUC(α) for the pancreatic cancer data estimated using the distribution-free method (solid curve) along with
the smooth distribution-free method (broken curve). Also shown are pointwise 90% confidence intervals based on the
distribution-free estimator and its bootstrap distribution.

bution of (Y1, Y2), but the binormal linear discriminant analysis method does, we would expect the DF
procedure to be more robust. To illustrate this, admittedly in an extreme case, Figure 5(a) displays sim-
ulated data for which the linear score Y1 + Y2 perfectly discriminates diseased from non-diseased states.
The DF procedure determined the true value of αopt, i.e. α̂DF = 1 with these data. With the linear discrim-
inant procedure, however, α̂LD = −0.106 which does not yield optimal discrimination. The empirically
estimated ROC curves associated with the two scores, Y1 + α̂DFY2 and Y1 + α̂LDY2, shown in Figure 5(b),
have empirically estimated AUC statistics of 1.00 and 0.91, respectively.

2.4. Logistic regression

Logistic regression has been proposed as a means of modelling the probability of disease given several
test results (Richards et al., 1996). It yields a linear score that intuitively discriminates diseased from
non-diseased subjects. It is well known that in the multivariate binormal setting, when the distributions of
(Y1, . . . , YP ) are multivariate normal in the diseased and non-diseased populations, the linear discriminant
and logistic scores are equal if the variance-covariance matrices are proportional. The linear discriminant
procedure has been shown to be statistically more efficient (Efron, 1975) when the model is correct.
Logistic regression, however, can be applied outside of the multivariate binormal setting. It relies only on
an assumption about the form of the conditional probability for disease given (Y1, . . . , YP ) and does not
require specification of the much more complex joint distribution of (Y1, . . . , YP ).

We consider logistic regression here as an alternative means to derive a linear score because the pro-
cedure is widely available and easy to use. In contrast to the LDA and DF procedures, however, it is not
motivated as a procedure which maximizes the area under the ROC curve for the linear score. Rather, in
logistic regression analysis, the coefficients (α1, . . . , αP ) are chosen to maximize the logistic likelihood.
It is not clear if the logistic likelihood relates to any natural measure of the discriminatory capacity of the
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Fig. 5. (a) Hypothetical data for which Y1 + Y2 > 1 for cases and Y1 + Y2 < 1 for controls. Dotted lines indicate
Y1 + α̂LDY2 = k for various values of k and show poor discrimination between cases and controls. (b) Empirical
ROC for the linear combination Y1 + αLDY2 based on hypothethical data shown in (a). The AUC is 0.91. The ROC
for the score Y1 + αDFY2 = Y1 + Y2 is perfect, with sensitivity = 1, specificity = 1, and AUC = 1.



130 MARGARET S. PEPE AND MARY LOU THOMPSON

linear score. Hence, in general, the logistic regression linear score is not easily motivated as an optimal
discriminator of diseased and non-diseased populations except in the multivariate binormal setting. It has
been shown, however, that, if complete discrimination is possible, LR will estimate the linear combination
which separates the populations (Day and Kerridge, 1967). This characteristic is illustrated below.

We applied the logistic regression model, P(D = 1 | Y1, Y2) = logit−1 (β0 + β1Y1 + β2Y2), to the
pancreatic cancer data. The estimated logistic coefficients were β1 = 0.027 for Y1 and β2 = 0.016 for
Y2 thus yielding α̂LR = 0.016/0.027 = 0.594 for the corresponding estimate of αopt. Since the logistic
likelihood depends on each of the regression coefficients, we cannot plot the likelihood, i.e. the objective
function, as a simple function of α = β2/β1. Thus, there is no simple plot for logistic regression that
corresponds to the plots in Figures 3 and 4 for the linear discriminant and distribution-free procedures.
The empirical estimate of the AUC associated with α̂LR = 0.594 is 0.891 and is indicated in Figure 4.

When logistic regression was applied to the data in Figure 5(a), the estimated coefficients were ex-
tremely large with values of 797 for β1, 806 for β2 and −801 for the constant term β0, essentially esti-
mating a logistic probability function which transitions rapidly from 0 to 1 where Y1 + αLRY2 = 1. Thus
α̂LR = 1.01, which is almost exactly the true value of 1.00 as anticipated.

2.5. A smooth distribution-free approach

Our next approach is a modification of the distribution-free method. Like the DF approach, it is based
on the fact that AUC(α) = P[Y D

1 + αY D
2 ≥ Y D̄

1 + αY D̄
2 ] but incorporates the assumption that AUC(α) is

a smooth function of α when Y1 and Y2 are continuous random variables. It will be shown that it gener-
alizes the DF approach and provides important additional capabilities that are not offered by discriminant
analysis or logistic regression. The idea is to model AUC(α) as a smooth function of α:

logit {AUC(α)} = β(α),

where β(α) is say a cubic regression spline, and to use a device based on pairs of diseased and non-
diseased observations to fit the model.

For each of the nD × nD̄ combinations (Y D
i1 , Y D

i2 , Y D̄
j1, Y D̄

j2) of a diseased and non-diseased observation

{i = 1, 2, . . . , nD; j = 1, 2, . . . , nD̄}, choose a set of m possible weightings {αi j
1 , α

i j
2 , . . . , α

i j
m } for Y2

and define
Ui jk = I

[
Y D

i1 + α
i j
k Y D

i2 > Y D̄
j1 + α

i j
k Y D̄

j2

]
for k = 1, . . . , m. Recall that E{Ui jk} = AUC(α

i j
k ). Moreover, we propose to model AUC(α

i j
k ) as a

regression spline in α
i j
k , i.e. as a linear combination of the regression spline basis functions of α

i j
k . We,

therefore, create the basis functions of α
i j
k as covariates for Ui jk and fit the model for AUC(α

i j
k ) using

standard GLM binary regression methods. Details of the fitting procedure can be found in the Appendix,
including choice of weightings, {αi j

k }, to ensure that the curve is fit over the entire domain α ε(−∞, ∞).

A simple search applied to the fitted curve, ÂUCSDF(α), yields the α̂SDF which maximizes the AUC.
Results of such a fitting procedure applied to the pancreatic cancer data are shown in Figure 4. In this

analysis we chose m = 40 and weights {αi j
1 , . . . , α

i j
m } chosen at random for each (i, j), with half having

a uniform distribution in (−1, 1) and half such that γ = α−1 had a uniform distribution in (−1, 1). The
smooth curve approximates the AUC curves generated by LDA and the DF methods closely (Figures 3
and 4). The optimal relative weighting of Y1 and Y2 corresponds to α̂SDF = 0.43 with estimated area of
ÂUCSDF = 0.891.

Interestingly, the distribution-free method described in Section 2.3 can be derived as a special case of
the smooth distribution-free binary regression-based method. If {αi j

1 , . . . , α
i j
m } are chosen to be the same
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for all (i, j) pairs and if the logistic model is saturated in the sense that it includes a distinct parameter
for each α (rather than using a regression spline basis in α) then, using the logistic approach, the fitted
value at each αk will be the proportion of Ui jk equal to 1. This is exactly the Mann–Whitney U statistic,

ÂUCDF(αk). Since the fitted values in this case are the same as for the DF procedure, the maximizing α

will be the same. In general, the smooth distribution-free (SDF) method seeks to estimate AUC(α) with
some smoothness constraints not imposed by the simple DF method. This may lead to increased statistical
efficiency. Our main interest in the SDF method, however, is in the important extensions which can be
achieved, which we describe next.

3. EXTENSIONS OF SNP

3.1. Optimizing partial areas

As an alternative to the area under the entire ROC curve as a measure of accuracy, Thompson and
Zucchini (1989) and McClish (1989) have suggested using the area under the ROC curve in a restricted
domain of false positive rates, the so-called partial area under the ROC curve (pAUC). The rationale
is that in many applications, tests with false positive rates outside of a particular domain will be of no
practical use and hence are irrelevant for evaluating the accuracy of the test. For instance, for a condition
with low prevalence, it may be clear that the referrals resulting from high false positive rates will put
an unacceptable burden on the health care system. Thus restricting attention to the ROC curve over a
practically relevant range of false positive rates is appealing. Wieand et al. (1989) also argue this point.

Let [0, t0] denote the range of false positive rates of potential interest and as before let Y D and Y D̄

denote random independent observations from diseased and non-diseased sets. It follows from Pepe
(1997) that

pAUC(α) = P
[
Y D

1 + αY D
2 > Y D̄

1 + αY D̄
2 and Y D̄

1 + αY D̄
2 > Q D̄(1 − t0, α)

]
,

where Q D̄(1 − t0, α) is the (1 − t0) quantile of Y D̄
1 + αY D̄

2 . We can use this result to optimize the partial

area using the SDF approach. The idea is to estimate the (1 − t0) quantiles of Y D̄
1 + αY D̄

2 using data from
the non-diseased set of observations, as is described in the Appendix. Then the SDF method is applied as
described in Section 2.5, except that Ui jk is set to 0 if Y D̄

j1 + α
i j
k Y D̄

j2 < Q̂ D̄(1 − t0, α
i j
k ).

3.2. Incorporating covariates

Characteristics of study subjects or features of the measurement process can influence the performance
of a diagnostic score and hence the area under its ROC curve. If such covariates are available and denoted
by X one can account for them in the SDF analysis by including them in a logistic regression model, such
as:

logit{AUC(α, X)} = β(α) + τ X .

This particular model assumes that β(α) is the same for all X .
The optimal linear combination Y1 + αY2 can be found with the SDF procedure in the following way.

Let Xi j denote the covariates pertinent to the i th diseased and j th non-diseased observations. In fitting

the logistic model to the binary indicator variables {Ui jk, i = 1, . . . , nD, j = 1, . . . , nD̄, k = 1, . . . , m},
in addition to the regression spline basis functions of α

i j
k , the covariates Xi j are also included as predictor

variables. The optimal α is then identified by a simple search to maximize the fitted regression spline
β̂(α). Observe that with the above model this approach results in a single linear combination which,
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assuming that the model is correct, is optimal for all covariate values. Indeed, since the same α optimizes
AUC(α, X) for all X , it will also optimize the marginal area function AUC(α) = E(AUC(α, X)). In large
samples an analysis that ignores X will therefore yield the same optimal α. Efficiency gains, however,
would be expected from fitting the covariate adjusted model.

For certain types of covariates it might be of interest to derive optimized scores which can vary with
covariate values, i.e. S(α, Y, X) = Y1 + α(X)Y2. This is easily accomplished by stratification when X
is categorical. More generally, however, one can use a parametric function for α(X). For example, one
could fit a model

logit {AUC(α, X)} = β1(α) + τ X + β2(α)X .

This allows the optimal, α, to vary with X . For any particular X , the optimal α, α(X), is that which
maximizes β1(α) + β2(α)X .

It should be noted that in many applications it will be desirable to derive a single combination of
markers which is not covariate specific. In particular this is true for covariates with values which cannot
be known at the time of testing in practical applications. Examples of such covariates are disease severity
(Pepe, 1998) and timing of test relative to clinical diagnosis (Etzioni et al., 1999).

3.3. Illustrations with prostate cancer data

We now illustrate the extended SDF approach on a prostate cancer dataset which is more complex than
the pancreatic dataset. Prostate specific antigen (PSA) measured in serum is currently used as a biomarker
for prostate cancer. To better understand its potential role in screening, free and bound levels of PSA were
measured in sera for 71 subjects who developed prostate cancer and for 71 age-matched controls, all of
whom participated in the CARET study, a randomized lung cancer prevention study including 12 025 men
(Thornquist et al., 1993). Subjects who participated in CARET had serum drawn and stored at entry into
the study and at 2 year intervals thereafter. Blood samples drawn after diagnosis of prostate cancer were
excluded from this analysis, leaving on average 3.2 samples per case and 6.5 samples per control in the
dataset (Figure 6).

Two different measures of PSA have been proposed in the literature for screening, total PSA and
the ratio of free to total PSA. Let Y1 = log(total PSA) and Y2 = − log(free PSA/total PSA), both of
which tend to be larger in cases than in controls. Etzioni et al. (1999) and Pearson et al. (1996) have
compared the diagnostic values of Y1 and Y2, each used on its own. Here we consider how Y1 and
Y2 might be used together. Although equivalently we could consider Y2 = − log(free PSA), we chose
Y2 = − log(free PSA/total PSA) because it is a measure of interest in itself which has been used in the
literature and we will want to compare the accuracy associated with it to that of the linear combination.
A covariate which affects diagnostic accuracy in this setting concerns the timing of the serum sample
relative to clinical diagnosis of disease for cases. Let Ti be the time prior to diagnosis at which the serum
sample i is drawn for a case. Accuracy would be expected to increase with decreasing values of Ti .

We fit the model logit {AUC(α, T )} = β(α) + τT to the data using the SDF approach. An interaction
between α and T was not considered because T is a variable which will not be known at the time of
screening in future applications. Thus a single linear combination which does not depend on T is desired.
Although cases and controls contributed several serum samples to the analysis, the data analysis unit
pertained to serum sample, rather than case or control per se. Due to the large number of observations
involved, in order not to exceed the storage capacity of our computer, we chose m = 2. The fitted model
is displayed in Figure 7. The optimal linear combination is Y1 + 0.37 Y2 with optimized area being 0.894
at T = 0 and 0.835 at T = 4 years. The optimized area was similar to that obtained for Y1 alone as a
marker (AUC(0, 0) = 0.889; AUC(0, 4) = 0.828) and thus in this dataset it does not appear that the ratio
measure adds substantially to accuracy when used in linear combination with total PSA. Interestingly,
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Fig. 6. Two measures of PSA, Y1 = ln(total serum PSA) and Y2 = −ln(free PSA/total serum PSA) measured on 71
prostrate cancer cases and 71 controls. Measurements were taken serially in time.
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Fig. 7. Smooth non-parametric AUC and partial AUC estimates for prostate cancer data markers based on the model
logit(AUC(α, T )) = β(α) + γ T where T is time of measurement relative to diagnosis for cases.

relative to using either marker alone it appears that accuracy is substantially reduced when the difference
between marker values is considered. This can be seen by the fact that the AUC decreases for negative
values of α. A likely explanation for this is the positive correlation between the markers (Figure 6). In
this example, the optimal coefficient α̂SDF was robust to the manner in which T entered the model, taking
the value 0.36 when −T + 1 was transformed to a logarithmic scale.
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A model which excludes the covariate T was fit to the same data, logit (AUC(α)) = β(α). This yielded
the same value of α = 0.37 to maximize the area under the curve. Observe that the optimized area in this
model is not specific to T but rather is, in a sense, averaged over observed T . We found ˆAUC(α) = 0.850.
A resampling experiment was done to ascertain the variability in the optimal α when α was derived using
the models with and without adjustment for the covariate T . Based on 100 resampled datasets we found
var(α̂opt) = 0.064 without covariate adjustment and var(α̂opt) = 0.057 with covariate adjustment, a gain
of 12% in efficiency by including T in the model.

When T is ignored as a factor relating to the predictive capacity of the marker, the LDA and LR
procedures can be applied as described earlier. They yield α̂LDA = 0.276 and α̂LR = 0.325, respectively.
Note that neither of these approaches can accommodate a covariate such as T which is specific to diseased
observations. In such settings only the SDF approach appears to be an option at present.

We next implemented the SDF approach to optimize the partial AUC. Again, neither LDA nor LR can
target the partial AUC specifically as the SDF method can. Restricting attention to false positive rates
≤ 20% = t0 with the SDF approach we fit the model logit pAUC(α, T ) = β(α) + τT to the data. The
same choices for m and for the regression spline knots (see Appendix) were used as above. The fitted
model is also displayed in Figure 7. The maximized partial AUC is achieved with α = 0.78 which is
substantially different than the relative weighting of α = 0.37 found when optimizing the full AUC. The
procedure yielded an estimated optimal pAUC of 0.106 at 4 years prior to diagnosis and 0.152 at the time
of clinical diagnosis. To interpret these values, consider that the maximum achievable pAUC is 0.20, and
the pAUC for an uninformative test is (0.20)2/2 = 0.02. Thus, the linear combination, Y1 + 0.78Y2,
appears to yield an informative score in the sense that it has a good ROC curve over an important range
of false positive rates. Note that although, in this example, the linear combination which maximizes
the partial area differs from that which maximizes the total area, both area measures are relatively flat
functions of α.

4. EFFICIENCY

Though, as demonstrated in Section 2.3, the distribution-free methods are more robust than the lin-
ear discriminant procedure, presumably they incur some loss of efficiency relative to linear discriminant
analysis (LDA) when the test result data follow a bivariate normal distribution. Simulation studies were
conducted therefore to investigate the extent of this loss in efficiency. We focused on the comparison of
LDA with the fully non-parametric or (DF) approach, reasoning that this provides a picture of the most
extreme efficiency loss and that because of smoothing the performance of the SDF approach would be
intermediate between the LDA and DF methods.

Bivariate normal data, (Y1, Y2), were generated for nD cases and nD̄ controls with mean and variance-
covariance matrix for cases

µD =
(

δ1
δ2

)
, �D =

(
1 ρ

ρ 1

)
,

and for controls

µD̄ =
(

0
0

)
, � D̄ =

(
1 ρ

ρ 1

)
.

Without loss of generality δ1 > δ2 > 0 and we considered ρ ≥ 0 to be of most practical interest. Thus
the ROC curve for Yp alone (p = 1, 2) is equal to

{
ROC( f ) = �

(
δp + �−1( f )

) ; f ∈ (0, 1)
}

with
AUC= �(δp/

√
2). The ROC curve associated with Y1 + αY2 has area:

AUC(α) = �
(
(δ1 + αδ2)/

√
(2{1 + 2αρ + α2})

)
.
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This, according to Su and Liu (1993), is optimized at

αopt = (1 − ρδ1/δ2)

/
(δ1/δ2 − ρ) .

When Y1 and Y2 are equally accurate on their own, i.e. δ1 = δ2, the optimal linear combination is
Y1 + Y2. Otherwise, the more accurate test (Y1) is given more weight in the optimal linear combination,
i.e. αopt < 1 if δ1 > δ2.

Table 1 shows the results of 1000 simulations, in each of which the LDA and DF methods were ap-
plied to the same data. In addition to summaries of derived coefficients, α̂DF and α̂LDA, and optimal
estimated areas, ÂUCDF(α̂DF) and ÂUCLDA(α̂LDA), we show measures of the true accuracies associated
with the scores Y1 + α̂DFY2 and Y1 + α̂LDAY2. These are the true AUCs and points on the true ROC
curve. Specifically we show the true positive rates for the optimized scores corresponding to the false
positive rates of 0.05, 0.10 and 0.20 for them, which are denoted by TP(FP = 0.05), TP(FP = 0.10) and
TP(FP = 0.20), respectively, in the tables.

Observe that the combination of Y2 with Y1 provides substantially better discrimination than does Y1
alone, i.e. α = 0, and that information on Y2 is most beneficial when Y2 is uncorrelated with Y1. With
an optimal linear combination the AUC is increased from 0.80 for Y1 alone to 0.88 when ρ = 0 and to
0.83 when ρ = 0.50. On the ROC scale itself, at a false positive rate of 0.20, the disease detection rate
increases from 0.64 to 0.80 when ρ = 0 and to 0.70 when ρ = 0.50.

The median coefficients α chosen by both the LDA and DF methods were approximately at the true
optimal value, α = 1.00. Variability in the coefficients was greater for the DF than LDA methods.
On the more relevant scale of accuracy, however, differences between the methods seemed minor. For
example, at nD = nD̄ = 100 and ρ = 0, the true median AUCs were the same (0.882) with 10–90th
percentile ranges that differed by 0.002. Relative to the gain in accuracy achieved by including Y2 with
Y1, the extra variation in AUC(α̂DF) over AUC(α̂LD) seems minor. Even with smaller sample sizes,
nD = nD̄ = 50 and when Y2 is less informative (ρ = 0.50) the difference between the methods is
small. Consider that at a specificity of 0.90, the sensitivity increases optimally from 0.325 to 0.393. Both
methods yield a median sensitivity of 0.390 with the difference between the lower 10th percentiles being
only 0.372 − 0.364 = 0.008. We conclude that with bivariate binormal data the rank-based DF procedure
yields a linear combination with accuracy close to that of the optimal linear discriminant procedure in the
settings we have studied. As suggested by a referee, we also applied the logistic regression (LR) procedure
to the simulated data (results not shown). Not surprisingly the performance of the LR estimated score,
Y1 + α̂LRY2, was intermediate between the LDA and DF scores. For binormal data with equal variance-
covariance matrices, logistic regression yields consistent estimates of the linear discriminant function,
that are less efficient than the maximum likelihood estimates produced by LDA. Because they impose
some structure on the data, however, one would expect slightly better efficiency than the DF estimator.
Given the close performance of the DF and LDA methods with binormal data, the gains by LR over DF
procedures are not likely to be practically important.

5. DISCUSSION

Statistical approaches to classification with multiple markers abound. These include binary regression,
linear and non-linear discriminant analysis, decision trees, Bayesian decision making and neural networks.
The latter three schemes derive specific decision rules to optimize an objective function. In contrast, our
methodology derives a score but not a specific decision rule. Information on costs associated with errors
and information on disease prevalence, for example, would be necessary in order to sensibly derive a
specific decision rule based on the score. In the absence of such information we derive only a score.
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Table 1. Results of 1000 simulations of bivariate normal data. The AUC
for Y1 and Y2 is 0.80, i.e. δ = 1.19. Shown are medians with 10th and

90th percentiles in parentheses
ρ = 0.00 ρ = 0.50

Truth

Y1 alone

AUC(0) 0.800 – 0.800 –

TP(FP = 0.20) 0.636 – 0.636 –

TP(FP = 0.10) 0.434 – 0.434 –

TP(FP = 0.05) 0.325 – 0.325 –

Optimal combination

αopt 1.00 – 1.00 –

AUCopt 0.883 – 0.834 –

TP(FP = 0.20) 0.800 – 0.703 –

TP(FP = 0.10) 0.656 – 0.537 –

TP(FP = 0.05) 0.515 – 0.393 –

n D = nD̄ = 100

Distribution-free combination

α̂DF 1.00 (0.71, 1.41) 1.01 (0.53, 1.92)

ÂUCDF(α̂DF) 0.887 (0.853, 0.915) 0.838 (0.799, 0.872)

AUC (α̂DF) 0.882 (0.877, 0.883) 0.833 (0.828, 0.834)

TP(FP = 0.20) 0.798 (0.789, 0.800) 0.701 (0.690, 0.703)

TP(FP = 0.10) 0.653 (0.641, 0.656) 0.534 (0.522, 0.537)

TP(FP = 0.05) 0.512 (0.500, 0.515) 0.391 (0.379, 0.393)

LDA combination

α̂LDA 1.00 (0.75, 1.36) 1.01 (0.57, 1.76)

ÂUCLDA(α̂LDA) 0.885 (0.851, 0.912) 0.837 (0.797, 0.869)

AUC (α̂LDA) 0.882 (0.879, 0.883) 0.834 (0.829, 0.834)

TP(FP = 0.20) 0.798 (0.791, 0.800) 0.701 (0.693, 0.703)

TP(FP = 0.10) 0.654 (0.645, 0.656) 0.535 (0.526, 0.537)

TP(FP = 0.05) 0.513 (0.503, 0.515) 0.391 (0.383, 0.393)

nD = nD̄ = 50

Distribution-free combination

α̂DF 0.99 (0.59, 1.58) 0.970 (0.35, 2.42)

ÂUCDF(α̂DF) 0.890 (0.843, 0.929) 0.844 (0.787, 0.891)

AUC (α̂DF) 0.881 (0.872, 0.883) 0.832 (0.821, 0.834)

TP(FP = 0.20) 0.797 (0.777, 0.800) 0.699 (0.676, 0.703)

TP(FP = 0.10) 0.651 (0.627, 0.656) 0.532 (0.507, 0.537)

TP(FP = 0.05) 0.510 (0.484, 0.515) 0.389 (0.364, 0.393)

LDA combination

α̂LDA 0.99 (0.64, 1.51) 0.968 (0.41, 2.26)

ÂUCLDA(α̂LDA) 0.888 (0.839, 0.925) 0.841 (0.783, 0.885)

AUC (α̂LDA) 0.882 (0.874, 0.883) 0.833 (0.825, 0.834)

TP(FP = 0.20) 0.797 (0.782, 0.800) 0.699 (0.684, 0.703)

TP(FP = 0.10) 0.652 (0.633, 0.656) 0.533 (0.515, 0.537)

TP(FP = 0.05) 0.511 (0.490, 0.515) 0.390 (0.372, 0.393)
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In essence we maximize a measure of distance between the distributions of the linear scores, S(α, Y ) =∑
αpYp, for diseased and non-diseased populations. Our method is similar to discriminant analysis in this

regard. Discriminant analysis maximizes the ratio of between group variance to within group variance.
We maximize the AUC or partial AUC which are different and general measures of distance between
distributions that can be estimated using rank information only. Moreover, since ROC curves are well
accepted as measures of accuracy in diagnostic medicine, it seems natural to use the area or partial area
under the ROC curve as the objective function to be optimized. Su and Liu (1993) have previously argued
this point and developed methodology for the case of multivariate binormal data. In this paper we have
put forth a distribution-free methodology that is applicable more generally.

In addition to comparing our methodology with linear discriminant analysis, we have compared it with
logistic regression, which also yields a linear score and which is widely available. In the various examples
we considered, the LR procedure performed well. Nevertheless, since the estimated coefficients in the
linear score are derived by maximizing a likelihood, the procedure does not appear to have a clear link
to a relevant objective criterion for the diagnostic setting. Further investigation of logistic regression in
this regard may be warranted. In addition there is no clear way of incorporating covariates that are only
observed in the diseased subjects.

We focused here on settings where two markers are available, in part because both of our applications
involved only two markers and in part because computation is relatively easy in this case. When P > 2
markers are involved, the problem is to find the P − 1 coefficients α = {α2, . . . , αP } such that the AUC

or partial AUC for the score S(α, Y ) = Y1 +
P∑
2

αkYk is maximized. The DF approach can be applied as
described in Section 2.3 but now a search in (P − 1)-dimensional space for α = (α2, . . . , αP ) is required.
This is straightforward but computationally demanding. As an alternative to searching simultaneously for
(α2, . . . , αP ), one might consider a stepwise approach. The first step would be to find the two markers
whose optimal linear combination is best in the sense of having maximal AUC (or pAUC) amongst all
pairs of markers. Having derived that score, and without loss of generality we denote it by S1(α2) =
Y1 + α2Y2, the next step is to find the marker that when put in optimal linear combination with S1(α2)

yields the best optimized AUC among all P − 2 remaining markers. Without loss of generality we denote
the optimized score by S2(α2, α3) = Y1+α2Y2+α3Y3. One can proceed in this fashion until all P markers
are included in the linear combination. The advantage of the stepwise approach is that each step requires
computation for only two markers at a time, and as described in Section 2.3 this requires the simple task of
searching in two finite intervals in one-dimensional space, αε[−1, 1] and 1/α ε [−1, 1]. The disadvantage
is that the weights (α2, . . . , αP ) derived in this fashion may not be optimal in (P − 2)-dimensional space.
Whether or not this is practically important remains to be explored.

The smooth distribution-free (SDF) approach can also be generalized to deal with P > 2 markers.
Rather than one-dimension for α, there are P − 1-dimensions, and thus for the (i, j) pair of diseased
and non-diseased observations we create (P −1)-dimensional vectors {αi j

1 , . . . , α
i j
m } and correspondingly

m binary random variables Ui jk indicating if the score Y1 +
P∑
2

αpYp calculated for the i th diseased

observation is greater than that for the j th non-diseased observation. One models the AUC (α
i j
k ) =

E(Ui jk) as logit
(
E(Ui jk)

) = β(α
i j
k ) as a smooth function in α

i j
k . Since α

i j
k is P − 1 dimensional,

multivariate regression splines will be necessary for modelling (Dierckx, 1993). After fitting the model,
a search of the fitted model in (P − 1)-dimensional space is needed to find the optimal {α2, . . . , αP }.
If these computations are overly complex for the user, a stepwise procedure can be applied to the SDF
algorithm, in analogy with that described above for the DF algorithm, wherein one marker at a time is
added to the linear combination.

Aside from computational issues, when the number of markers is large one needs to be concerned with
potentially over-fitting the data. Neural networks, classification trees, etc. deal with this by incorporating
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penalty functions. The sorts of penalty functions appropriate for AUC or pAUC optimization are, however,
likely not the same as those for likelihood optimization. This remains an area for future development.

We have introduced a new approach to deriving linear combinations of markers that maximize the
area or partial area under the ROC curve. Our procedures avoid modelling probability distributions of
the data, in contrast to linear discriminant analysis, which is based on a binormal model, for the data.
Yet, simulation studies suggest that the new procedures seem to be efficient with binormal data. This
efficiency is reminiscent of the statistical efficiency of the Mann–Whitney U statistic for comparing two
normal distributions (Hollander and Wolfe, 1973). An important advantage of the new procedures is that
they can be used to maximize the partial AUC, whereas this is not necessarily accomplished by LDA
unless the covariance matrices in the diseased and non-diseased populations are proportional (Su and Liu,
1993). Moreover, the new procedures accommodate covariates in a natural way and allow covariates to
be specific to diseased observations. The new procedures are, however, computationally more demanding
than is discriminant analysis or logistic regression. The DF method requires evaluation of ÂUC at each α

in the range of interest. The SDF method requires that the data be reconfigured as m × nD × nD̄ records
a potentially very large number which can adversely affect speed of computations.

Confidence intervals for the AUC(α) functions can be calculated using resampling methods. Pointwise
intervals based on the non-parametric estimator are shown in Figure 4 for the pancreatic cancer data.
These can be used informally to determine if the data support combining the markers linearly or if a single
marker suffices. In Figure 4 for example, the optimal AUC, AUC(α = 0.39) is within the 90% confidence
interval for AUC(α = 0). This suggests that Y1 alone is sufficient. Formal testing of the hypothesis that
AUC(α = 0) =AUC(α̂opt) would require estimating AUC(α̂opt) for each resampled dataset, which could
be achieved with cross-validation methods although this would be highly demanding computationally.

Combining markers as linear scores was the focus of this paper. Linear combinations are intuitively
best suited to discrimination if either very large values of any marker suggests presence of disease, or
moderate increases in several markers suggest disease. Restricting attention to linear scores also made the
problem more tractable. One could, however, consider a larger space of functions, such as generalized
additive scores S(α) = g1(Y1)+∑

αpgp(Yp) where gp is a linear combinations of (basis) functions of Yp.
The problem then is to optimize the AUC or partial AUC with respect to parameters in gp, p = 1, . . . , P
and with respect to α2, . . . , αP . Although the maximization is essentially the same as that previously
discussed for the multiple marker problem with P > 2, the multiplicity of parameters involved can make
this particularly difficult computationally.

In summary, we have proposed methods for finding linear combinations of markers to maximize mea-
sures of accuracy which are commonly used in diagnostic medicine. The methods are distribution-free,
appear to have good statistical properties, and can incorporate heterogeneity characterized by covariates.
Further applications of the methods to real datasets will help define their potential role in practice.
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A. APPENDIX

A.1. Implementing the smooth distribution-free (SDF) approach

A key step in implementing the SDF method concerns the choice of relative weights {αi j
1 , . . . , α

i j
m }.

We chose half of the weights {αi j
1 , . . . , α

i j
m/2} in the interval (−1, 1) and the remainder {αi j

m/2+1, . . . , α
i j
m }

such that γ
i j
k = (α

i j
k )−1 are located in (−1, 1). As described for the DF approach, this makes the pro-

cedure symmetric in Y1 and Y2. Since the objective is to fit the AUC(α) model over the entire domain
αε(−∞, ∞) it is important that the design points, i.e. the αs, cover the domain. In our illustrations we
chose {αi j

1 , . . . , α
i j
m/2, γ

i j
m/2+1, . . . , γ

i j
m } to have independent uniform distributions in (−1, 1). Even if m,

the number of α’s chosen for each i j pair, is small, if there are a large number of such pairs, the overall
effect is to densely cover the domain.

To fit a smooth function to AUC(α) in (−1, 1), we parameterized it as a cubic regression spline with
fixed knots in (−1, 1). In order to deal with α /∈ (−1, 1), one could similarly define for α−1 = γ ∈
(−1, 1) a regression spline for AUC(γ −1). However, to ensure continuity of the AUC at α = γ = 1
we modified the procedure as follows. We considered the range (−1, 3), where (−1, 1) was relevant to
α ∈ (−1, 1) and the range (1, 3) was relevant to 2 − γ where γ ∈ (−1, 1). Choose a set of P knots
in the range (−1, 3) and calculate the corresponding basis functions for α

i j
k if α

i j
k ∈ (−1, 1) and for

(2 − γ
i j
k ) if γ

i j
k = (α

i j
k )−1 ∈ (−1, 1). The logistic regression model for the binary variables Ui jk is

fit to these basis functions of α
i j
k , resulting in a smooth functional form for AUC(α) which is contin-

uous at α = 1. In our examples we choose P = 17 knots for the regression spline model located at
{−0.9, −0.75, −0.50, −0.25, 0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 2.9}.

A.2. Implementing the partial AUC maximization

The key aspect not described in the main text for applying the SDF approach to maximizing the partial
AUC, was estimation of the 1 − t0 quantiles associated with Y D̄

1 + α Y D̄
2 , denoted by Q D̄(1 − t0, α).

We choose to implement a semiparametric method due to Heagerty and Pepe (1999), although alternative
quantile regression methods such as those of Koenker and Bassett (1978), He (1997), Cole and Green
(1992) or Efron (1991) might be used instead. Heagerty and Pepe (1999) assume that the data follow
a location and scale family with unspecified baseline distribution function. We construct m × nD ×
nD̄ data records, {Si jk = Y j1 + α

i j
k Y j2 for α

i j
k ∈ (−1, 1) and Si jk = (α

i j
k )−1 Y j1 + Y j2 for α

i j
k /∈

(−1, 1); k = 1, . . . , m; i = 1, . . . , nD; j = 1, . . . , nD̄} and model the mean and variance as smooth
functions of α. Specifically, as described in A.1 we use a regression spline on (−1, 3) for the mean
function µ and for the variance function σ 2, with the range (−1, 1) pertaining to α

i j
k ∈ (−1, 1) and

the range (1, 3) pertaining to (2 − (α
i j
k )−1) for α

i j
k /∈ (−1, 1). The empirical quantiles of the residuals,

{(Si jk −µ̂(α
i j
k ))/σ̂ (α

i j
k ); i = 1, . . . , nD; j = 1, . . . , nD̄; k = 1, . . . , m}, denoted by Q̂0(q) for q ∈ (0, 1),

are used to estimate quantiles of the baseline distribution. The estimated quantile Q̂ D̄(1 − t0, α
i j
k ) is then

given by µ̂(α
i j
k ) + σ̂ (α

i j
k )Q̂0(1 − t0).

[Received April 26, 1999; revised November 1, 1999; accepted for publication November 22, 1999]


